Anyone who has had the good fortune to hear an orchestra brilliantly perform a symphony composed by one of the great masters knows that each of the carefully tuned musical instruments contributes to the collective, harmonious sound produced by the musicians. In many ways, the normally tuned immune system continuously plays an orchestrated symphony to maintain homeostasis in the context of host defenses. However, as William Shakespeare noted, “Untune that string, and, hark, what discord follows!” (Troilus and Cressida). Similarly, an untuned immune system can cause discord, which manifests as autoimmunity, cancer, or chronic inflammation. Fortunately for most of us, our immune system is steadfastly vigilant in regard to tuning (regulating) itself to ensure that its cellular components behave and interact symbiotically to generate protective immune responses that ensure good health. In many ways the immune system can be described in anthropomorphic terms: Its memory allows it to remember and recognize pathogens years or decades after initial exposure; it can distinguish between the body’s own cells and those of another organism; and it makes decisions about how to respond to particular pathogens—including whether or not to respond at all, as will be discussed in Chapters 2 and 3.
In his penetrating essays, scientist–author Lewis Thomas, discussing symbiosis and parasitism, described the forces that would drive all living matter into one huge ball of protoplasm were it not for regulatory and recognition mechanisms that allow us to distinguish self from nonself.
The origins of these mechanisms go far back in evolutionary history, and many, in fact, originated as markers for allowing cells to recognize and interact with each other to set up symbiotic households. Genetically related sponge colonies that are placed close to each other, for example, will tend to grow toward each other and fuse into one large colony. Unrelated colonies, however, will react in a different way, destroying cells that come in contact with each other and leaving a zone of rejection between the colonies. In the plant kingdom, similar types of recognition occur. In self-pollinating species, a pollen grain landing on the stigma of a genetically related flower will send a pollen tubule down the style to the ovary for fertilization. A pollen grain from a genetically distinct plant either will not germinate or the pollen tubule, once formed, will disintegrate in the style. The opposite occurs in cross-pollinating species: self-marked pollen grains disintegrate, whereas nonself grains germinate and fertilize.